An Integrated Hydrological Model for Water Balance Estimation in the Chirchik River Basin, Northern Uzbekistan
نویسندگان
چکیده
Accurate and detailed information of hydrological balance, and its dynamic nature is needed to develop strategies for sustainable use and management of water resources. In this concern, a fully integrated MIKE SHE model was developed to study the hydrological balance of the Chirchik River Basin, Uzbekistan. Parameters in the model were calibrated and simulated results were validated for the periods 2009-2011 and 2012-2013 in term of two observed hydrological parameters: streamflow rate and groundwater table. After the successful calibration of the parameters, the model produced quantitative results of the water cycle and provided better understanding of the surface and groundwater interactions. The results show that the hydrological balance is strongly dependent on the intensity of agricultural activity within the basin. An actual evapotranspiration was found as a main water loss element among the water transport components due to large-scale agricultural irrigation activities. This corresponds to 77% of the total water budget as an average. A satisfactory water balance simulation error was obtained after adjusting model parameters to basin environment.
منابع مشابه
Future climate change impact on hydrological regime of river basin using SWAT model
Hydrological components in a river basin can get adversely affected by climate change in coming future. Manipur River basin lies in the extreme northeast region of India nestled in the lesser Himalayan ranges and it is under severe pressure from anthropogenic and natural factors. Basin is un-gauged as it lies in remote location and suffering from large data scarcity. This paper explores the imp...
متن کاملAn estimation of Thornthwaite monthly water-balance in Mighan sub-basin
Water resources in arid and semi-arid regions are heavily influenced by climate change, water shortage, water regulations, and increased water demands. Monthly discharge is one of the most important factors in hydrological studies. Some of the basins are not equipped with adequate hydrometric equipment. In such a case, average monthly discharge could be estimated by regional monthly water balan...
متن کاملIntegrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspi...
متن کاملInvestigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity
Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, an...
متن کاملComparison of GRACE with in situ hydrological measurement data shows storage depletion in Hai River basin, Northern China
Water storage change has implications not only for the hydrological cycle, but also for sustainable water resource management in especially semi-arid river basins. Satellite/remote sensing techniques have gained increasing application in monitoring basin and regional hydrological processes in recent decades. In this study, the latest version of GRACE (Gravity Recovery and Climate Experiment) is...
متن کامل